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Self-intersection in surfaces is a typical defect that makes a 3D model unsuitable for 
many applications. Existing neural networks for 3D surface mesh reconstruction are 
faced with the challenge of integrating self-intersection prevention. In this paper, we 
propose a trainable cycle regularization in mesh reconstruction networks to prevent self-
intersection. It is a general technique that can be easily implemented with existing surface 
mesh generation networks. Our experiments on two latest mesh reconstruction networks 
demonstrate that with the proposed cycle regularization, self-intersections in the generated 
meshes are significantly reduced, while the shape similarity is comparable with the original 
networks under the Chamfer distance metric.

© 2019 Elsevier B.V. All rights reserved.

1. Introduction

Inferring 3D shape from a single view image is a traditional problem for computer vision. In computer graphics, 3D 
modeling from a given image has also been extensively studied. In recent years, deep neural networks Choy et al. (2016); 
Fan et al. (2017); Kato et al. (2017); Kar et al. (2015); Wu et al. (2015); Dou et al. (2017); Tatarchenko et al. (2017); Sinha et 
al. (2017); Wu et al. (2018) have achieved great success in this field. Unlike classic shape from X (e.g. Horn (1975); Rhodin 
and Breuß (2013); Criminisi and Zisserman (2000)) approaches, these neural networks are able to recover not only the 
visible frontal shape but also the invisible part for an object from a single-view color image by learning and representing 
complicated prior knowledge from a large dataset.

Existing networks all rely on variants of 2D convolution neural networks to extract information and encode 2D images, 
but use quite different techniques to represent and decode 3D shapes. Started from 3D ShapeNets Wu et al. (2015) and 
greatly improved by introducing octree structure Tatarchenko et al. (2017), volumetric representation and 3D convolutional 
networks are most commonly used in this problem. A point set generation network Fan et al. (2017) uses unordered point 
set representation and directly regresses a point set using both convolutional and fully connected branches. Dou et al. (2017)
employ a bilinear model to represent 3D faces and regress the interpolation coefficients to generate a 3D face model from 
one single image. Sinha et al. (2017) explicitly use spherical parameterization as a post-processing stage to represent a 3D 
shape as a geometry image in the parameter domain.
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Fig. 1. Self-intersections in 3D surface mesh reconstruction networks. (a) A surface mesh of a plane generated by AtlasNet Groueix et al. (2018) (sphere 
as its parameter domain). (b) A surface mesh of a plane generated by Pixel2Mesh Wang et al. (2018). Outside faces are rendered as golden and inside 
faces are rendered as bluish. Some inside triangles are exposed due to self-intersections. We highlight some self-intersected faces and their corresponding 
overlapped points in the close-up view. (For interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)

In recent study, AtlasNet (Groueix et al. (2018)) and Pixel2Mesh (Wang et al. (2018)) to be specific, a new idea has 
been applied on this problem. Neural networks are designed to learn the mapping from a predefined surface (square or 
sphere for AtlasNet, and ellipsoid for Pixel2Mesh) to a target surface instead of directly regressing the absolute positions of 
surface points as in Fan et al. (2017). These methods have shown great potential in generating meshes for generic objects. 
It is convenient to integrate mesh-related operations and energy functions in these networks. For example, Pixel2Mesh 
integrates graph-based unpooling and Laplacian regularization in the network.

Despite all of these progresses, there are still a number of issues such as how to encode and generate more shape details, 
how to express complex topology for mesh in neural networks. These issues prevent network-generated meshes from being 
practicable in many real-world applications. However, we believe deep learning is the most promising technique to integrate 
more intelligent methods in 3D modeling.

In this paper, we address a specific issue that appears in both AtlasNet Groueix et al. (2018) and Pixel2Mesh Wang 
et al. (2018). As shown in Fig. 1, the AtlasNet and Pixel2Mesh frequently generate meshes with self-intersected surfaces. 
This issue appears partially because AtlasNet and Pixel2Mesh employ the Chamfer distance loss, which is used firstly to 
train the point set generation network (PSGN, Fan et al. (2017)). The Chamfer distance loss was designed to measure 
the discrepancy between two unordered point sets and it does not take surface into consideration. AtlasNet uses Poisson 
surface reconstruction as post-processing or double-sided lighting in rendering to cover up this issue. Pixel2Mesh adopts a 
coarse-to-fine framework and uses additional losses (i.e. edge length loss and Laplacian loss) in order to alleviate this issue. 
They all fail to address the essential reason behind this issue, while most efforts in these mesh generation networks have 
been put on increasing shape details for the generated meshes.

In this paper, we tackle the issue of self-intersection from the essential reason behind it, which is non-injectivity of the 
predicted mapping. Without injectivity, two points on the predefined source surface could be mapped to the same point by 
the neural network, which leads self-intersection or self-overlapping in the generated surface.

To enforce injectivity, one possible strategy is to start from a feasible solution and keep every deformation or optimiza-
tion step inside feasible regions. In works of deformation (e.g. Sederberg and Parry (1986); Gain and Dodgson (2001)), such 
strategy is usually executed as follows. A clean mesh that is free from self-intersection is chosen as the initial mesh and local 
self-intersection is prevented by constraining the Jacobian of the mapping function in the subsequent steps in deformation. 
In works of parameterization optimization for surface with disk topology, Tutte’s embedding Tutte (1963) or its variants are 
typically employed to get an initial bijective mapping and triangle fold (local self-intersection) is prevented with different 
techniques in follow-up optimization steps. More specifically, triangle fold can be prevented by adding barrier energy from 
distortion metrics (e.g. Poranne and Lipman (2014); Aigerman et al. (2014)), bounding the triangle distortion (e.g. Smith and 
Schaefer (2015); Lipman (2012)) or using a progressive strategy Liu et al. (2018).

It is non-trivial to adopt their strategies for training neural networks, since existing networks learn to predict the map-
ping for many different shapes simultaneously and only a batch of these shapes are sampled from the dataset in each 
training iteration. One challenge is to initialize the network parameters to ensure that initial outputs are free of self-
intersection for all possible inputs. Another challenge is to alter batch-based optimizer to constrain the deformation of 
outputs within an injective region for all possible inputs.

In order to learn injective mapping for meshes, we propose cycle regularization which is deduced from the basic decision 
theorem of injectivity. It reduces not only local self-intersections but also global self-interferences of the surface. It is easy 
to implement by reusing the existing differentiable layers within existing surface mesh reconstruction networks, such as 
AtlasNet Groueix et al. (2018) and Pixel2Mesh Wang et al. (2018).

Our strategy is to use an inverse 3D decoder to learn an inverse mapping from the target surface back to the source 
surface along with the forward mapping in the original network. Therefore, a point from the source surface can be mapped 
to the target surface and then mapped back. We use the difference after such cycle mapping to form our regularization 
term and we call it cycle regularization. While the network learning a mapping to approximate the target surface, our 
regularization term tries to ensure that an inverse mapping exists (i.e. making the forward mapping injective, as we explain 
in Sec. 3.2). Note that the inverse 3D decoder is only needed in the training phase. Therefore, it is a regularization technique 
which does not increase the complexity of the original neural network for mesh generation.

In summary, our contributions in this paper are three-fold.
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• We propose a novel cycle regularization technique to prevent self-intersection for surface mesh reconstruction networks.
• We apply our cycle regularization technique on two latest mesh generation networks, AtlasNet Groueix et al. (2018) and 

Pixel2Mesh Wang et al. (2018), showing that our technique keeps the network end-to-end trainable by using existing 
differentiable layers.

• We validate with experiments that when trained with the proposed cycle regularization, these networks are able to 
produce surface meshes with significantly less self-intersections, and still lead to comparable Chamfer distance between 
the generated mesh and the ground-truth mesh compared with the original networks.

2. Related work

3D reconstruction and modeling from a single image have been extensively studied as the problem of shape from 
monocular cues, including shadings Zhang et al. (1999), focuses Favaro et al. (2008); Favaro and Soatto (2005), and tex-
tures Aloimonos (1988). These methods usually recover 2.5D surfaces from 2D images. Learning-based approaches, especially 
deep learning methods, can acquire more complicated priors by learning from datasets and recover much more complete 
3D shape from a single image.

2.1. General learning approaches

As far as we know, early learning-based approaches can be traced back to Hoiem et al. (2007) and Saxena et al. (2007). 
These methods learn to segment and classify regions in an image and finally produce a coarse 3D scene by folding the 
2D image. More recent techniques divide the problem into two stages Su et al. (2014); Huang et al. (2015). They first 
retrieve shape components from a large dataset, and then assemble the components and deform the assembled shape to fit 
the observed image. These methods need to segment all object models into components for the database. However, shape 
retrieval from images itself is an challenging problem due to the loss of information during 3D-to-2D projection. Kar et al. 
(2015) avoid the retrieval step by learning a deformable 3D shape for each category and learn to predict deformation from 
an input image for these specific categories.

2.2. 3D neural networks

Most recently, researchers have developed techniques to represent 3D shapes inside deep learning frameworks. Unlike 
images, 3D shapes are not canonical functions on well-organized grids. This leads to exploration on various representations 
of 3D shapes.

Volume Occupancy. An intuitive way to apply convolutional layers in 3D is to use volume occupancy of regular 3D grids 
to represent 3D shapes Wu et al. (2015). It is subsequently used for 3D shape generation Choy et al. (2016); Girdhar et 
al. (2016). The main disadvantage of volumetric representation was its large memory consumption due to the raising of 
dimension when extending 2D grids to 3D. Octree representation is proposed to support higher resolution outputs with 
limited memory, and used for shape generation Tatarchenko et al. (2017) and shape analysis Wang et al. (2017).

Point Cloud. Compared to regular 3D grids, point cloud representation is not limited by fixed local connections. Many 
networks have been proposed to take unordered 3D point sets as input and extract geometric features from a 3D point 
set for classification or segmentation Charles et al. (2017); Qi et al. (2017); Li et al. (2018). The first attempt to generate a 
set of discrete points from a single image using neural networks was made by Fan et al. (2017). However, it is non-trivial 
to construct continuous surface models from the predicted point sets, since the local variations of point positions are not 
continuous in the predicted point sets.

Mesh. Meshes are widely used in game and movie industries. In addition to vertex positions, mesh representation conveys 
local structures of vertices. However, mesh representation is not well supported in current neural networks. To generate 
mesh models using neural networks, composition weights of a series of base meshes are predicted by networks Pontes et 
al. (2017) and Dou et al. (2017). Since it is only possible to choose or learn base meshes for a specific class of objects, 
these two networks only generate meshes for a specific class of objects, such as face. In comparison, the idea of learning 
to map from a predefined domain as in AtlasNet Groueix et al. (2018) and Pixel2Mesh Wang et al. (2018), can generate 
surface meshes for generic objects. Our work is a follow-up of their general idea and addresses a specific issue of surface 
self-intersection in their networks.

2.3. Parameterization for neural networks

The idea of utilizing surface parameterization for neural networks has been explored by Sinha et al. (2017, 2016). Typi-
cally, a non-trainable procedure is involved for the creation of geometry images. Manifold surfaces are required as training 
data so that the shapes can be parameterized using spherical parameterization and turned into geometry images. However, 
public datasets like ShapeNet Chang et al. (2015) contain meshes that are not manifold surfaces. In comparison, we are 
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seeking techniques that can be integrated into networks and can be trained end-to-end along with the networks. Based on 
the same insight (self-intersection for surface mesh is related to non-injective mapping) as the parameterization techniques 
(e.g. Lipman (2012); Schüller et al. (2013); Poranne and Lipman (2014); Aigerman et al. (2014); Smith and Schaefer (2015); 
Liu et al. (2018)), we propose a novel technique that is more suitable for training neural networks in an end-to-end manner.

2.4. Cycle neural networks

The general idea of using neural networks to map from one domain to another domain and then map back has been 
utilized in previous works. In CycleGAN Zhu et al. (2017), a famous example of such work, the cycle relation provides an 
extra constraint for translation between unpaired data from different domains. In comparison, our work uses the same 
general idea to enforce injectivity for 3D surface mesh generation networks and prevent self-intersections in generated 
meshes.

2.5. Non-learning based self-intersection removal

Non-learning based methods (e.g. Jung et al. (2004); Pekerman et al. (2008); Yamakawa and Shimada (2009); Li and 
Barbič (2018)) for removing self-intersections follow the pipeline that first identifies the self-intersected faces and then 
alters the faces with their proposed methods. However, it is difficult to integrate such a pipeline into neural networks or to 
formulate their alteration operations in a differentiable manner.

3. Proposed method

In this section, we first establish the relationship between self-intersection and non-injectivity. Then we introduce the 
proposed cycle regularization technique as shown in Fig. 3 and explain in details about how we respectively apply this 
general technique onto AtlasNet Groueix et al. (2018) and Pixel2Mesh Wang et al. (2018), whose network structures are 
quite different from each other.

3.1. Injective mapping and self-overlapped points

Definition 1. Let f be a function whose domain is a set X . The function f is said to be injective provided that

∀a,b ∈ X, f (a) = f (b) ⇒ a = b. (1)

Equivalently,

∀a,b ∈ X,a �= b ⇒ f (a) �= f (b). (2)

Start with the definition of injective mapping at Definition 1, we can intuitively induce the conclusion that given a 
surface with X = {x | x is a point on the surface}, another surface with Y = {y | y is a point on the surface} and a function 
f : X → Y . If ∃ a, b ∈ X , a �= b and f (a) = f (b) (i.e. the overlapped points on the target surface exists) then by definition, f
is not an injective function. Equivalently (as the converse negative proposition), we can make sure there is no self-overlapped 
points on the target surface by enforcing injectivity for f .

3.2. Cycle regularization

Theorem 1. A function f with a left inverse is necessarily injective. That is, given f : X → Y , if there is a function g : Y → X such that,

∀x ∈ X, g( f (x)) = x, (3)

then f is injective.

Based on Theorem 1, we turn an injective constraint to our cycle regularization term as:

cycle X ( f , g) =
∑
x∈X

||g( f (x)) − x||2. (4)

In mesh reconstruction networks, this term (Eq. (4)) is illustrated in Fig. 2. As shown in Fig. 2, points from the source surface 
(as the red point) is mapped to image points (as the green point) on the target surface by a 3D decoder f to generate a 
shape of plane. These image points are then mapped back to points on the source surface (as the blue point) by the inverse 
decoder g . We are minimizing the difference after such cycle mapping (as the distance between red point and blue point) 
to ensure that f has an left inverse mapping g and enforce injectivity for f .
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Fig. 2. Illustration of our cycle regularization.

Fig. 3. The cycle regularization implemented along with two networks. (a) is the implementation with AtlasNet Groueix et al. (2018). f is the forward 3D 
surface decoder in the original network and g is our inverse decoder used to form the regularization term. (b) is the implementation with Pixel2Mesh 
Wang et al. (2018). Pixel2Mesh Wang et al. (2018) adopts the coarse-to-fine framework and uses three G-ResNet blocks ( f1, f2, f3) to map the mesh to 
target shape on three different point density. The graph-unpooling layers are used for mesh upsampling. We use three point-wise MLP (g1, g2, g3) as the 
inverse decoders for each level of point density and form a regularization term for each level.

By minimizing this term to zero:

f̂ , ĝ = arg min
( f ,g)

cycle X ( f , g), (5)

we can get the f̂ that has the left inverse function ĝ , therefore f̂ is injective.
However, it is almost impossible to actually minimize a regularization term to zero, especially during training neural 

networks. But when this term is minimized to sufficiently small, we can construct a g∗ that is the left inverse function of 
f̂ and guarantee that f̂ is injective. An example of such case is that when the regularization term is so small that for any 
x, ĝ( f̂ (x)) is closer to x than any other point in X . Such example can be summarized by Proposition 1.

Proposition 1. Given sets X and Y that are two subsets of Euclidean space R3, a function f : X → Y and a function g : Y → X, if

∃ g,∀x ∈ X, ||g( f (x)) − x||2 ≤ min
b∈X

||g( f (x)) − b||2, (6)

then f is injective. x and b are both used to represent elements in X.

Proposition 1 can be proved by simply compositing the nearest neighbors with the function g . We can construct a 
nearest neighbor function q : R3 → X as:

∀a ∈ R3,q(a) = arg min ||a − b||2 (7)

b∈X
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then

||g( f (x)) − x||2 ≤ min
b∈X

||g( f (x)) − b||2

⇒ x = arg min
b∈X

||g( f (x)) − b||2

⇒ q
(

g
(

f (x)
)) = x

(8)

then g∗(y) = q
(

g(y)
)

is the left inverse of f , therefore f is injective. Here, y is used to represent an arbitrary element in Y .

Remaining Gap. Even when the condition in Proposition 1 is met after optimization, there is still no guarantee for the 
injectivity of f over a continuous surface. The reason is that when we turn Eq. (3) into Eq. (4), a theoretical gap exits. 
The constraint in Eq. (3) is defined over continuous surfaces, while the term in Eq. (4) is defined on discrete point sets. 
In order to fill in the gap as much as we can, we randomly sample X from a predefined surface in the training phase 
instead of minimizing the cycle regularization for any specific set of X . Sampling different X from the predefined surface 
is already employed by AtlasNet. This is a commonly used technique to encode latent variation in generation networks 
since VAE Kingma and Welling (2013). For Pixel2Mesh, we add such a sampling in the inverse decoding. We did not add 
it in forward 3D decoding to avoid altering the original forward inference path for Pixel2Mesh. We want to keep our cycle 
regularization general in the way that it can work along with surface mesh generation networks without altering the original 
network. Our controlled experiment validates that it is better for our cycle regularization technique to work with such a 
sampling.

3.3. Implementation in networks

As a simple inference from the Universal Approximation Theorem, AtlasNet Groueix et al. (2018) has stated that it is 
possible to use a multilayer perceptron with ReLU nonlinearities and sufficient hidden units to approximate any shape 
within a small positive error ε . In practice, we employ another 3D surface decoder to approximate g . Then we explain 
how we implement this technique for AtlasNet and Pixel2Mesh respectively. Generally speaking, we reuse their network 
structures respectively and show that our cycle regularization is generally suitable for this type of networks.

Cycle-AtlasNet. Depending on a shape representing feature s, AtlasNet uses point-wise MLP f with parameters θ f to learn 
to map points in X = {x|x are points uniformly sampled from surface P } to points in Y = {y|y are points uniformly sampled 
from surface S}. In our implementation, P is a spherical surface. S is the generated surface for an object. We use another 
point-wise MLP g with parameters θg to map points from Y back to X . Along with our cycle regularization, the total loss 
function for Cycle-AtlasNet is:

L(X,Y )(θ f , θg) =
∑
x∈X

min
y∈Y

|| f (x; s, θ f ) − y||2

+
∑
y∈Y

min
x∈X

|| f (x; s, θ f ) − y||2

+ λ
∑
x∈X

||g(
f (x; s, θg); s, θ f

) − x||2,

(9)

where the shape representation feature is simply concatenated to each point so that f and g depend on a global shape 
feature s. λ is the weight for cycle regularization term. In AtlasNet, s is generated from either PointNet He et al. (2016) for 
auto-encoding or ResNet-18 He et al. (2016) for single view reconstruction. g is a MLP with the same number of units in 
hidden layers as f , as shown in Fig. 3.

Cycle-Pixel2Mesh. Comparing to AtlasNet, Pixel2Mesh uses a more complicated network structure which generates shapes 
in a coarse-to-fine framework. As shown in Fig. 3, Pixel2Mesh uses three blocks of graph-based convolutional residual 
network ( f1, f2, f3) to map mesh-based features to the generated surface at three different levels of point density. To make 
cycle regularization compatible with such a framework, we also use three point-wise MLPs as the inverse decoder and form 
our regularization term as:

Lcycle(θ f , θg) =
∑

x̂∈ X̂1

||g1(ŷ1; s1, θg1) − x̂||2

+
∑

x̂∈ X̂2

||g2(ŷ2; s2, θg2) − x̂||2

+
∑

ˆ
||g3(ŷ3; s3, θg3) − x̂||2,

(10)
x̂∈X3
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where x̂ and ŷl are sampled as a convex combination of vertexes in each triangle as:

x̂ =
3∑

n=1

wnxn,

ŷl =
3∑

n=1

wn fl(xn; sl, θ fl ),

N=3∑
wn = 1.

(11)

The combination coefficients wn are randomly generated but kept the same for corresponding x̂ and ŷl in each level l. θ f is 
the whole parameter sets for f1, f2, f3. θg is the whole parameter sets for g1, g2, g3. s1, s2, s3 are features extracted from 
different layers of VGG-16 based on the input point positions X1, X2, X3 in the network. X̂1, X̂2, X̂3 are the sets of sampled 
points at each level. As mentioned in Sec. 3.2, random sampling from predefined surface is crucial for our technique. Since 
Pixel2Mesh does not include such sampling in their method, we add it in our inverse decoding. In other words, in our 
inverse decoding we do not directly map the vertices from the target surface back to the predefined surface. Instead, we 
map the sampled points ŷl from each face back to the corresponding samples x̂. The correspondence between x̂ and ŷl are 
ensured to be locally injective by using the same set of convex combination coefficients wn for the sampling. We multiply 
our regularization term with weight λ and add it to the original loss function of Pixel2Mesh (see Wang et al. (2018) for 
the original loss function). For more details of our implementation, please refer to our supplemental material1 for the 
code.

4. Experiments and discussions

Data. To fairly evaluate the effect of the proposed cycle regularization, we use the datasets released by AtlasNet and 
Pixel2Mesh respectively. Their model sets are both subsets of ShapeNet Chang et al. (2015) and they both used the ren-
dered images from Choy et al. (2016) in dimensions of 224 × 224. However, the absolute sizes and positions of the models 
and the sampled points as ground truth are not processed in the same way in these two datasets, which makes it unreason-
able to compare them all together. Therefore we evaluate the effect of our regularization technique with these two networks 
separately with their own released data.

Training. Unless specifically explained, the network models shown in this paper are trained as follows. The parameters for 
image encoders and forward 3D decoders θ f are initialized with the parameters released by AtlasNet Groueix et al. (2018)
and Pixel2Mesh Wang et al. (2018) respectively. The parameters for inverse decoders θg are randomly initialized. We use 
the ADAM Kingma and Ba (2014) optimizer with the same learning rate as in the original codes of AtlasNet and Pixel2Mesh 
respectively. We use λ = 0.25 as an empirical choice for the weight of our cycle regularization term.

Evaluation Criteria. In order to quantitatively evaluate the issue of self-intersection and self-overlap, we compute the per-
centage of self-intersected triangles (“SI”) over the total number of triangles. For this evaluation, we provide our code in 
the supplemental material which calculates the “SI” for an input mesh. We also use Chamfer distance (“CD”) as the original 
AtlasNet and Pixel2Mesh to evaluate how well the generated mesh approximates the ground truth shape. For the evaluation 
of Chamfer distance we used the codes that are already implemented by AtlasNet Groueix et al. (2018) and Pixel2Mesh 
Wang et al. (2018).

Mesh Generation and Visualization. Since we are addressing an issue regarding the quality of generated meshes, any 
post-processing used in AtlasNet Groueix et al. (2018) is not used in our experiments. All the triangulations are directly 
transferred from the source surface. We do not divide the triangles to get denser vertices either. The meshes from AtlasNet 
all have 2500 vertices and about 4k faces. The meshes from Pixel2Mesh all have 2466 vertices and 4928 faces.

To better expose the issue we are addressing in this paper, we render the generated mesh in MeshLab and use the 
“gooch.gdp” in the software as our shader. In such mode, triangles are rendered golden outside and bluish inside. The 
golden region and bluish region interlacing at surfaces evidently indicates the self-intersected surfaces.

4.1. Experiments on toy data

Being free of self-intersection is a rather geometric prior for surface mesh than a semantic one. Therefore, in this experi-
ment, we do not involve any semantic networks and show the effect of our proposed technique in approximating a specific 
shape. Such experiments with toy data quickly provide an intuitive view to observe the effect of our cycle regularization 

1 https://data .mendeley.com /datasets /52z7nxkkz6 /draft ?a =3e7e6179 -8290 -4dea -9025 -1998a594da12.

https://data.mendeley.com/datasets/52z7nxkkz6/draft?a=3e7e6179-8290-4dea-9025-1998a594da12
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Fig. 4. Optimization of a randomly initialized MLP to approximate a specific target ground truth (GT) shape with and without cycle regularization. The cycle 
regularization takes effect after only a few iterations. It does not only keep the mapping injective during optimization, but also corrects the self-intersections 
in output that are generated by the random initialization. When optimized without the cycle regularization term, self-intersections occur during the entire 
optimization process.

Fig. 5. Deformation results with different λ.

term at a much smaller cost than actually training networks on a large dataset. We optimize the same objective function 
as in Eq. (9), but do not use semantic networks (neither ResNet-18 He et al. (2016) nor PointNet Charles et al. (2017)) to 
generate the latent shape representation s. We treat s as a free variable. We use the same MLP for f and g as in Eq. (9), 
but we only optimize the output shape to approach a specific ground truth shape. We randomly initialize the parameters 
θ f , θg and s with standard normal distributions and sample X from a spherical surface. We use ADAM Kingma and Ba 
(2014) as the optimizer with 0.001 as the learning rate. We set the maximum iteration number to 1024 for all experiments 
in this subsection. As shown in Fig. 4, the optimization process typically converges much earlier before 1024 iterations. 
Under such setting, we are optimizing a randomly initialized MLP, whose initial output usually contains self-intersections, 
to approximate a specific ground truth shape.

We first visualize the converging process when optimized with and without the proposed cycle regularization term. As 
the case shown in Fig. 4, our cycle regularization takes effect after only a few iterations. It not only keeps the mapping 
injective in following iterations, but also corrects self-intersections from the random initialization.

We then test on different λ to control the contribution of the cycle regularization term in the entire objective function. 
As shown in Fig. 5, visually speaking, when λ = 0.25, the deformed shape is able to approximate more details than using 
a larger λ (i.e. λ = 0.5 and 1.0), and it is also sufficient to enforce the injective mapping. Therefore, we use λ = 0.25 as an 
empirical choice in following experiments. However, finer tuning of λ for specific networks is possible.

We also explore cases with higher genus by manually choosing torus as the source surface. Though this is not a viable 
approach to enable neural networks to generate shapes with complex topology, it allows us to observe the effect of our 
cycle regularization in the cases of genus-one. As shown in Fig. 6, with a torus as the source surface, the cycle regularization 
significantly reduces self-intersection and prevents the collapse of the hole in the torus. As shown in the cases of “okay” and 
“love” shapes, the outputs without cycle regularization are wildly self-intersected and the hole in the tori both collapsed, 
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Fig. 6. Approximation of genus-one surfaces with and without cycle regularization. The columns of “Init” are the initial output shapes. The columns of 
“With Cycle” or “Without Cycle” are the final output shapes optimized with or without cycle regularization, respectively. Under each output shape, we 
report its Chamfer distance (CD) to ground truth, the percentage of self-intersection (SI) and the cycle regularization loss (Cycle, if used).

while the outputs with cycle regularization all preserve the hole. However, the torus-based outputs are more easily to get 
stuck at a local minimum of the cycle regularization term, where the remaining self-intersected triangles tends to twist 
together and form two knots. With a spherical source surface, though the outputs do not contain the hole as in the ground 
truth models, they are less likely to get stuck at a local minimum of the cycle regularization term with self-intersections.

4.2. Cycle regularization in AtlasNet and Pixel2Mesh

In this subsection, we conduct experiments to evaluate our cycle regularization along with two latest networks, AtlasNet 
Groueix et al. (2018) and Pixel2Mesh Wang et al. (2018). We report the quantitative evaluation for AtlasNet and Pixel2Mesh 
in Table 1 and Table 2 respectively. We show visual examples for AtlasNet and Pixel2Mesh in Fig. 7 and Fig. 8 respectively. It 
can be seen that after applying our cycle regularization, the percentage of self-intersected triangles are significantly reduced, 
while the generated shapes remain comparable to the shapes generated by the original networks in the Chamfer distance 
metric.

More specifically, in Table 1, we evaluate our cycle regularization with AtlasNet on two tasks, auto-encoding (AE) and 
single view reconstruction (SVR). In the auto-encoding task, the neural network reconstructs a complete 3D mesh from a 
point set (encoded by PointNet Charles et al. (2017) to generate shape representation feature s) which contains relatively 
more complete information about the 3D shape. In the single view reconstruction task, the neural network takes a single 
view image (encoded by ResNet-18 He et al. (2016) to generate s) as input and reconstructs a complete 3D mesh. Therefore, 
it is easier to reach lower Chamfer distance (0.0017) in auto-encoding. In the single view reconstruction task, there are cases, 
as highlighted by red rectangles in Fig. 7, that preventing self-intersections provides extra prior knowledge for the network 
to learn to generate more details for the generated shape. We believe this is perhaps why our performance in “CD” are 
slightly worse than the original AtlasNet in auto-encoding (0.0019 vs. 0.0017) but slightly better than the original AtlasNet 
in single view reconstruction (0.0050 vs. 0.0052). Nevertheless, both the “SI” criteria in Table 1 and the visual examples 
in Fig. 7 supports that the proposed cycle regularization can effectively reduce self-intersections in AtlasNet. Averagely, the 
percentage of self-intersected faces in our generated meshes decreases about two orders of magnitude comparing to meshes 
generated by the original networks.

In Table 2, we show evaluation on Pixel2Mesh. Our model is slightly worse than the original Pixel2Mesh in terms of 
Chamfer distance. We believe this is because we have not yet properly investigated how our cycle regularization term 
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Table 1
Evaluation on AtlasNet trained without and with cycle regularization (Ours). Chamfer distance (CD) (103 times at 
left) and the percentage of self-intersected (SI) faces (at right) are reported. “AE” stands for the shape auto-encoding 
task, and “SVR” stands for single view reconstruction task. Sphere means that the models are using a sphere as the 
predefined surface to sample points. The mean is data-wise as it is implemented in the evaluation code of AtlasNet.

AE-sphere SVR-sphere

AtlasNet Ours AtlasNet Ours

Cellphone 1.3, 0.53% 1.4, 3.4e−3% 3.8, 1.4% 3.7, 2.7e−4%
Watercraft 1.5, 2.3% 1.8, 6.8e−4% 4.3, 7.4% 4.3, 2.6e−4%
Monitor 1.8, 1.8% 2.0, 9.8e−4% 6.9, 3.4% 6.5, 9.8e−4%
Car 1.8, 0.52% 1.8, 8.0e−4% 3.9, 0.47% 3.8, 1.8e−3%
Couch 1.9, 2.5% 1.9, 8.8e−4% 5.1, 2.0% 4.9, 1.7e−3%
Cabinet 2.0 2.3% 2.2, 1.2e−2% 5.3, 3.6% 5.2, 4.3e−3%
Lamp 2.7, 14% 3.4, 5.5e−2% 13.2, 19% 13.1, 2.0e−2%
Plane 1.0, 18% 1.2, 1.9e−3% 2.6, 18% 2.6, 2.9e−3%
Speaker 2.9, 0.77% 2.9, 1.1e−3% 10.2, 1.7% 9.6, 3.1e−4%
Bench 1.3, 11% 1.6, 7.4e−3% 4.0, 12.3% 3.9, 1.6e−2%
Table 1.7, 12% 2.0, 2.1e−2% 4.9, 10.7% 4.8, 1.79e−5%
Chair 1.9, 12% 2.1, 2.7e−2% 5.3, 10.9% 5.3, 2.3e−2%
Firearm 0.7, 4.9% 0.9, 2.1e−3% 2.2, 18.2% 2.2, 1.2e−3%

Mean 1.7, 8.5% 1.9, 1.3e−2% 5.2, 9.6% 5.0, 1.2e−2%

Table 2
Evaluation on Pixel2Mesh trained with (ours) and without cycle regularization. For cycle regularization, the cases 
with fixed X (the vertices of the ellipsoids as X ) and random X (sampled as in Eq. (11)) are both evaluated. Chamfer 
distance (CD) (103 times and at left) and percentage of self-intersected (SI) faces (at right) are reported. The mean 
is data-wise calculated.

Pixel2Mesh Ours

Fixed X Random X

Cellphone 0.303, 0.22% 0.304, 3.85e−3% 0.288, 3.85e−3%
Watercraft 0.433, 0.84% 0.438, 2.51e−2% 0.433, 1.25e−2%
Monitor 0.390, 0.585% 0.425, 1.15e−2% 0.397, 9.27e−3%
Car 0.233, 0.145% 0.242, 1.39e−3% 0.239, 1.24e−3%
Couch 0.361, 0.21% 0.384, 3.67e−3% 0.377, 2.26e−3%
Cabinet 0.268, 0.167% 0.283, 5.32e−3% 0.276, 5.80e−3%
Lamp 0.728, 10.3% 0.788, 0.190% 0.795, 0.182%
Plane 0.265, 1.82% 0.300, 3.75e−2% 0.289, 3.37e−2%
Speaker 0.523, 0.487% 0.524, 5.39e−3% 0.523, 5.34e−3%
Bench 0.323, 1.13% 0.349, 3.32e−2% 0.350, 1.48e−2%
Table 0.304, 1.17% 0.333, 4.98e−2% 0.330, 3.87e−2%
Chair 0.392, 1.68% 0.420, 6.82e−2% 0.414, 5.10e−2%
Firearm 0.326, 1.86% 0.352, 8.64e−2% 0.349, 7.36e−2%

Mean 0.345, 1.47% 0.369, 4.20e−2% 0.364, 3.45e−2%

interferes with other loss terms in Pixel2Mesh. However, both the overall performance in Table 2 and the visual examples in 
Fig. 8 are already evident enough to support the main idea in this paper that the proposed cycle regularization significantly 
reduces self-intersection in the generated meshes for Pixel2Mesh. In Fig. 9, we provide more examples proving that the 
proposed cycle regularization takes effect in all three levels in the coarse-to-fine framework of Pixel2Mesh.

To evaluate the effect of the random sampling for X on reducing the theoretical gap, which is discussed in Sec. 2, we 
conducted controlled experiments to train our model with a fixed point set X of an ellipsoid and randomly sampled X
from the ellipsoid (as in Eq. (11)). From Table 2, we can see that our cycle regularization works better when trained with 
random X , especially by the measurement of self-intersection. The model trained with random X has lower average “SI” 
across almost all categories (except cellphone and cabinet). Thus, the results shown in Fig. 8 and Fig. 9 are all generated 
from the model trained with random X .

4.3. Limitations and future work

Averagely speaking, with our cycle regularization, less than two self-intersected triangles are generated in each output 
mesh. However, the self-intersections are not totally prevented. As shown in Fig. 10, some failure cases are shown. In the 
future, we would like to deduce a more elegant hard constraint on the network parameters to enforce injectivity.

Our cycle regularization is only validly deduced for the cases that the mesh reconstruction network maps from only one 
source surface to the target surface. This fundamental limitation prevents us to apply it for surfaces with more complicated 
topology. However, we believe a possible better solution for this limitation would be applying mask on the surface to handle 
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Fig. 7. Cycle regularization on AtlasNet. All the visualized cases here are selected from the test set of AtlasNet. We manually adjust the view direction for 
some meshes to better expose the differences. The red rectangles highlight a case where more details are preserved than the original network because 
injectivity is enforced with our cycle regularization.

Fig. 8. Cycle regularization on Pixel2Mesh. These examples are selected from the test set of Pixel2Mesh. We adjust the view direction for some meshes to 
better expose the differences.

holes instead of using multiple source surfaces. We would like to use attention techniques in deep learning to predict such 
masks.

5. Conclusions

In this paper, we propose the cycle regularization technique for preventing surface self-intersections in generic surface 
mesh reconstruction networks. The cycle regularization technique reduces self-intersections by enforcing injectivity in neu-
ral networks. It stems from the basic injectivity decision theorem and enforces injectivity by simultaneously learning an 
inverse mapping along with original mapping. It is quite simple to implement with existing mesh generation networks. Our 
experiments on two latest mesh generation networks prove that our technique is effective for reducing self-intersections in 
the generated meshes.
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Fig. 9. Visualization of the effect of our cycle regularization in the coarse-to-fine framework of Pixel2Mesh. The green rectangle shows a close-up view of a 
subtle self-intersection in the airplane model.

Fig. 10. Failure cases of our cycle regularization. Though self-intersections are significantly reduced for most cases, they are not entirely removed in these 
results.
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